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J. Phys: Condens. Matter 5 (1993) 1707-1720. Printed in the UK 

A theoretical treatment of the magnetic resonance properties 
of Sc and Ru 

W GGtz and H Winter 
Kemforschungszent” Karlsruhe. lnstitut fiir Nukleare Festkorperphysik, PO Box 340, 
W-7500 Karlsruhe, Federal Republic of Germany 

Received 21 October 1992. in final form U December 1992 

AbsImcL We evaluate the low-temperature susoeptibilitier, the Knight shifls, and the 
spin-lattice relaxation times of the hexagonal d Vansition metals Sc and Ru and give a 
detailed account of the individual mnlributions expressed Ulmugh magnetic “elation 
functions. m e  mulls are in reasonable agreement with tabulated experimental data for 
Sc and very recenl measurements for Ru. 

I. Introduction 

Nuclear magnetic resonance properties of metals have received continuous 
experimental and theoretical attention during the past few decades since they shed 
light on the electmnic structures, yielding information not immediately deducible 
from the bandstructures. Both the coupling between nuclear spin and the orbital 
motion and the spins of the electrons are probed. In addition, the different responses 
of the core electrons and the valence electrons and the interactions between them 
lead to distinct contributions to the Knight shifts ( I C )  and the spin-lattice relaxation 
times (TI) whose significance can be judged term-by-term by considering data for 
the susceptibility, xu, in addition. This opens up the possibility of investigating such 
delicate questions as the quality of the various exchangecorrelation potentials used 
in spin density functional approach (SDFA) as a function of the electronic density 
(Gotz and Winter 1991) and-most important in the case of the ceramic high-T, 
materialsto test the validity of the SDFA for the system in question (Gotz and 
Winter 1m). 

Theoretically, the situation is rather comforting, since, hased on the pioneering 
work of Jaccarino (1967) and Narath (1967) where the basic formdations can 
be found, all the contributions to these quantities may be expressed in terms of 
magnetic correlation functions and the way the functions are calculated preserves 
the individuality of the given system expressed by the characteristics of its electronic 
structure. 

Experimentally the investigations have gone so far as to measure IC under pressure 
(Bertani et a1 1990). However, for a number of interesting systems, experimental data 
are not yet available. In the case of the hexagonal d transition metal Ru data for IC have 
only recently been obtained (Burgstaller el a1 1992). We found it therefore worthwhile 
to apply our SDFA-RPA approach to correlation functions to calculate A-, TI and xo for 
Ru and for comparison also for the 3d transition metal Sc. 

0953-8984M/111707+14$07.50 @ 1993 IOP Publishing Ltd 1707 



1708 W Gdlr and H Winter 

The present paper is organized as follows. In section 2 we summarize the 
formalism, collecting the relevant relations and emphasizing the necessity to consider 
the dependence of the correlation functions on all their variables. In section 3 we 
present our KKR bandstructure calculations and display and discuss our resultc in 
section 4. We close with a summary in section 5. 

2. Formalism 

'Ib describe the properties in question quantitatively we need, apart from the one- 
particle Green's function, the spin density xbc, and the momentum density xFpm 
correlation functions. Here, a, 0 are Cartesian components. Each component, 
Xap(r,r';w), depends on two space coordinates r,  T' and a frequency variable, 
W. In the local representation a coordinate r located within the WgnerSeitz (ws) 
cell of site K in the unit cell j at position Rj may be defined by the following relation: 
r = p + rX + Rj = ( p ,  ~ , j ) .  Here, p is the coordinate relative to site K. If the 
position T is in the central unit cell (Rj = 0) we simply write: r = ( p , ~ ) .  In the 
case of a crystalline solid it is appropriate to work with the lattice Fourier transforms, 
xq, of x, defined through the following equation 

(2.1) 

Once xq is !mown the diagonal part of the realspace double Fourier transform, 
x(q,q;w), of X( r , r ' ;w )  may be obtained via the following relation 

X,,(~K,~'IE';W) = xt" ' (p,p ' ;w)  = CeiqRJx(pK,p'tc'j;w). 
j 

X(9rPW) = CXX='(Q,Q;w) 

..,.. 
The quantity x(q, q;w)  is usually referred to as the wavevector-dependent correlation 
function. We mlua te  both xmom and within the SDFA-RPA, namely express 
xmom and the non-interacting part xR of 9 in terms of the bandstructure one- 
particle Green's function, g,(pK, p ' d ; ~ ) ,  whereas the potential, &, giving rise to 
the enhancement effects of xs is gained from the SDFA. The contributions of the core 
electrons have been treated separately from the valence electrons and are labelled 
'core' in the following formulae. The details of this method and various applications 
have been described in previous papers (e.g. Stenzel and Winter, 1985, 1986, Winter 
et uf 1992). 'Ib enable discussion of our results, we therefore restrict ourselves to 
collecting the relevant expressions. 

Neglecting spin-orbit coupling the static homogeneous susceptibility, xu, is 
determined through the following relations (GGtz and Winter 1992b) 

with 
X U ~ S  = Xrpiaap + xorbe~ (2.3) 

x,i.,p = lim x::'(n,n;w)6,p (2.4) 
q-oIc,d 

and 
VdI dia,mre 

X ~ , P  = X M ~ B  + XM 6 , ~  
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Due m xT$, the value of the susceptibility depends on the direction of the external 
magnetic field and we did calculations for both H parallel (p = 3) and H 
perpendicular (p = 1 or 2) to the c axis of the HCP structure. 

The expression for the Knight shift K is based on the non-relativistic 
hypertine Hamiltonian, XM, (Bloembergen and Rowland, 1953) and gives rise to a 
decomposition into the spin contact ( I f s , + ) ,  the spin dipolar the paramagnetic 
orbital and the diamagnetic orbital part They depend both on 
the position n of the nuclear spin and on the direction p of the magnetic field and 
are defined through the following relations 

Here, is the charge density of the core electrons of atom n. The core 
polarization term, h$"), has to be added to these contributions. All the formulae 
on the RHS of (2.6) are given in atomic units (au), and to get the percentage Knight 
shifts the numbers have to be multiplied with a factor of 2.6626 x 

To derive the expression for the spin lattice relaxation time, T,,  we write, following 
Moriya (1963), 1/T, in terms of the fluctuations of the hyperfine Hamiltonian 'FfHhf in 
the limit of small frequencies, wU, (tiwu < kBT). This relation reads 

rN is the nuclear gyro-magnetic ratio and 'Hi = X,, % i'Hhf,,. Neglecting spin-orbit 
coupling effects and making use of the fluctuation dissipation theorem we obtain the 
following expression for 1/T, in terms of the correlation functions: 

where p is the direction of the external magnetic field and the spacedependent 
coupling tensors for the spin part are given by 

and those for the orbital part by 

(2.10) 
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P is the sum of the contact term FsC and the dipolar contribution P d i p .  The 
quadrupolar terms, finite in the case of HCP structure, will be treated separately. 

In contrast to xu and K, evaluation of 1/T, requires knowledge of the dynamical 
correlation functions in the low-frequency limit over the whole Brillouin zone (BZ). 
However, if one neglects enhancement effects, that is to say, if one replaces 9 
with the non-interacting susceptibility, xps, in (2.8), l/Ti can be rigorously expressed 
through symmetry-adapted partial DOS at cF and space integrals over products of 
radial wavefunctions, determining the so-called hyperfine fields. A large number of 
terms resulting from such an approximate treatment have been derived for the HCP 
structure by Asada and 'krakura (1982) and we take over their definitions when 
presenting our calculated data. 

Addressing enhancement effects one should keep in mind that it is hard to 
establish a general relation between a wavevector- and sitedependent Stoner factor 
defined by 

on the one hand and the ratio 

W G61z and H Wmter 

S(9 )  = X s h ~ ( Q , 9 ; O ) / X ~ R ~ ( ~ , 9 ; 0 )  

h x ' , " % , d ; w d / I m  X ~ " ( P , P ' ; W ~  
relevant for equation (2.8) on the other. l b  treat this problem quantitatively we use 
the following representation of Yq, derived by Stenzel and Winter (1985): 

X",""'(P, d;wu) = c Y L , M , ( B )  RI,", ( P I  R,&)YL%M*(b' )  RI,&') 
1 , 1 * " I Y  l,I4"3"4 

'IMl L l M l  

x R,, , (P')g- ' (  Ll M A k i  %I L, ~ z & w 4 ;  WO). (2.1 1) 

Here, the YLM arc real spherical harmonics and RI&) is the uth pdependent 
energy expansion coefficient of the radial part of the single-site wavefunction, R , ( p ,  E) 
around 6 = cp The elements of 2 comprise these labels vi and the angular 
momentum numbers. The ratio of 2 to 2" turns out to depend sensitively on the 
matrix element in question and also to be strongly qdependent In this connection 
one should note that in the case of d transition metals contributions with L,, Mi = 0 
and l i  = 2 are especially important for Y ( q , q ; w ) ,  whereas the terms with L i ,  M i ,  
li = 0 determine the spin contact part of l/Tl. 

The formulae displayed in this section refer to the non-relativistic limit. If for 
a particular substance we use a scalar relativistic bandstructure, the radial integrals 
occurring in these expressions should be modiIied according to the rules as derived 
by Bliigel et af (1987) and Ebert and Akai (1992). 

3. The handstructures 

We performed scalar relativistic KKR bandstructure calculations on a prism mesh 
of 2100 k-points in the irreducible wedge of the Brillouin zone (IWZ) for both 
substances in the HCP structure. For exchange and correlation, the potentials of von 
Barth and Hedin (1972) have been used. 

The total and the angular momentum decomposed DOS for Sc are shown in 
figure 1 and the 20 lowest bands along the main symmetry directions are displayed 
in figure 2 The peak structure between about 0.3 Ryd and 0.8 Ryd is dominated by 
d states with a non-negligible admixture of s states at the lower end and p states, 
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especially in the vicinity of the Fermi energy, eP eF falls into a local mimimum 
Within the fine structure of the lowest pronounced d peak, causing the relatively high 
DOS value of 30.18 states/(Ryd atom). The corresponding numbers for the s, p, d 
and f partial W S  are 0.497, 7.64, 21.38, and 0.666, respectively. Within the structure 
above 0.9 Ryd, the DOS values are moderate and the proportions of the p and f states 
become comparable to those of the d states. 'RI test convergence in the angular 
momentum expansion we did also runs with I,, = 4 and conclude that g scattering 
starts to become non-negligible only above 2 Ryd. 

Figure 1. n e  s, p, d, and f panial Dos and the 
Iota1 MS (sum) [or k calculated for the 20 lowest 
valence bands. ?he vertical line at e = 0.437 Ryd 
designates the Fermi energy. 

Figure 2 ?he lowest 20 valence bands of Sc along 
some symmetly directions within the IWBZ me 
Fermi surfam ( t ~  = 0.437 Ryd) is built up ly 
the bands 3 and 4. 

In the energy regime where comparison is possible our results are in general 
agreement with the work of Das (1976), MacDonald and Vosko (1979), and 
Matsumoto el al (1991). The latter authors show that a fully relativistic treatment 
yields slightly smaller numbers for the DOS at eF. 

We show the corresponding data for Ru in figure 3 and figure 4. Similarly to Sc 
the DOS curve of Ru consists of a low-energy structure of mainly d states followed 
by a low-Dos and a moderate-Dos regime above 1.5 Ryd with appreciable s, p, d, 
and f partial DOS admixture. g states become important above U 3 Ryd. The details, 
however, are markedly different In the case of Ru eF lies in an extended mimimum 
between bonding and anti-bonding d states leading to the relatively low DOS value of 
11.78 states/(Ryd atom) and the numbers 0.141, 0.783, 10.51, 0347 for the s, p, d, 
and f partial DOS, respectively. The agreement of our results with the bandstructure 
work of Jepsen et uf (1975) is reasonable. 

Comparing our bandstructure data for Sc and Ru we expect marked differences 
in those quantities mainly determined by Fermi surface properties, e.g. the spin- 
dependent contributions to the susceptibility and the Knight shift. However, the 
orbital quantities can also be assumed to show a significant variance because of the 
pronounced differences in the Dos features in a finite energy range around eP 

4 Results and discussion 

4.1. The static homogeneous susceptibilities 
The values for the different contributions defined in (24) and (25) for scandium are 
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F@m 3. The & p, d, and f partial ws and the 
total ws (sum) for Ru calculated for the 7.0 lowest 
valence bmds. The vertical line at z = 0.7135 Ih/d 
designates the Fermi energy. 

FIgntt 4. The lowest 7.0 Mlena bands of Ru 
along =me symmetry directions wilhin the lwBZ 
The Fermi surface ( e ~  = 0.7135 Ryd) is built up 
by the bands 7 to IO. 

displayed in table 1. Both xab and xWin are significant and xWb shows appreciable 
anisotropy, whereas the core contribution, ~$,"u)~, is only a small correction. We 
investigated the sensitivity of xVin on a number of exchang-rrelation potentials, 
V, frequently used in applications of the SDFA. The results are also contained 
in table I together with the abbreviations of the authors of these potentials and 
the corresponding references. This appreciable dependence of S on V, can be 
understood by noting that enhancement effects are determined by the radial integrals 
of K,, the derivative of V, with respect to the magnetization density, between the 
product of four radial wavefunctions and for Sc the most important one reads 

RW 

(K,) = J pZdpK,(p)$(p,cd. ( 4 4  
U 

The integrand of the RHS of (4.1) assumes its largest values near the Ws sphere 
boundary ( p  = R,) where K, reaches its maximum and the magnitude of R,(p, eF) 
is still fairly large. The electronic density there corresponds to T. = 2.42 and, in l i e  
with our previous treatment of the alkali metals Li and Na (Gotz and Winter 1991), 
the data for the different K ,  considered show a large scatter in this density range. 
Our (xu) based on K=- is near the experimental numbers 388 x emu mol-' 
and 393 x emu mol-', obtained by Spedding and Croat (1973) and Stierman et 
d (1983). Concerning these uncertainties our results for xIpin are reasonably close 
to the theoretical numbers 293.4, 281.25 and 270 x emu mol-' of Das (1976), 
MacDonald and Vosko (1979) and Matsumoto ef a1 (1991) respectively, who used 
the variational principle (Vosko and Perdew 1975) to get the Stoner enhancement. 
Our value for the directionally averaged x:;, (x3)  = 101.39 x emu mol-' 
is slightly smaller than the result of Das (1976) for the van Vleck term, ( x z )  = 
127.8 x emu mol-'. However, according to Benkowitsch and Winter (1982) 
(x$,) also contains the Landau contribution and the diamagnetic contribution of the 
valence electrons. 

all contributions to xu 
are much smaller than in the case of Se. For xVin this is an immediate consequence of 
the much lower DOS values n(eF) at eF leading to a reduction of the non-interacting 
susceptibility X R - a n d  even more efficiently-of S to 1.34. For this substance xrpi,, 

Our data for Ru are shown in table 2 Evcept for 
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Tabk L ?he salic homogeneous susceptibility of Sc in units of emu mol-'. 
The averaged value of the total susceptibility is de6ned as (xo) = f(xol -+ 2 x 0 ~ ) .  
The Stoner enhancement bctors S = Xlpin/Xkin have been evaluated using our mull  
xgin = 71.68 x 

1713 

emu mol-1. 

Orbital susceptibility Spin susceptibility 

xorb Kx used xqin S (XO) x% x$" 
Hllc 123.88 -10.47 113.41 VBH' 230.61 3.22 33277 , 

H l c  90.15 -10.47 79.68 d 217.06 3.03 319.23 
JMWC 323.51 4.51 425.68 
G L ~  298.49 4.16 400.66 
R* 230.61 3.22 33277 
W N f  26229 3.66 364.46 

a WO BarIh and Hedin (1972). 
Perdew and Zunger (1981). 
Janak a d  (195). 

Rajagopal (1980). 
Vcsko a d (1980). 

* Gunnarsson and hndqvist (1976). 

hardly depends on the choice of fi6, and this is due to both the magnitude of n(cF) 
and to the higher electronic density of Ru (rS = 1.72 at Rw). In table 2 we therefore 
quote only the two results for xVia showing the largest differences. The connection 
between xz and the DOS features on the other hand is less obvious. Making use of 
the KramersKronig relation btween the real and the imaginary part of xoh we found 
that an energy range around cF of about Cl4 Ryd in the case of Ru and 0.35 Ryd for 
Sc provides the main contributions to this quantity. The signnificant differences of the 
electronic structures of Sc and Ru in this regime are clearly represented by the DOS 
curves (figures 1 and 2). Sc especially profits from the fact that eF is surrounded by 
a high d DOS structure. 

Table Z The static homogeneous susceptibility for Ru m uniIs of 
value of xiin is 27.99 x 

emu mol-'. Our 
emu mol-'. 

Orbital susceptibility Spin mceptihility 

X a b  Kx Xgio s (XO) 
E11c 20.68 -11.41 9.27 pz 37.60 1.34 47.18 
E l c  21.15 -11.41 9.74 IMW 38.48 1.37 48.06 

x$ x2-= 

The experiments of Kojima ei a1 (1%1), Jsaacs and Lam ( W O ) ,  and Guthrie and 
Bourland (1931) performed at room temperature, also yield small numbers for (xu), 
namely 34, 41, and 43 x emu mol-', respectively, iyifflg somewhat below our 
result. 

4.2 The Knight shps 

In our calculations we augmented the formulae of section 2 with the radial integrals 
applying to the scalar relativistic case plugel et a1 1987). The numbers of table 3, 
where we list IC together with its individual contributions for Sc, show the tendency of 
cancellation between the spin parts due to the appreciable and negative value of the 
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core polarization term, Kq. Kcp is composed of the contributions -0.025, -0.1614, 
and -0.033%. from the Is, 2s and 3s core shells of Sc leading to the corresponding 
core polarization hyperfine fields -6.42 x 103, -4.15 x 104, and -8.46 x lof kG, 
respectively. The dipolar term, Kr,dip is rather small and anisotropic The numbers 
for the spin terms in table 3 are based on the potential of Vosko ef ai (VWN) (1981). 
All three of those contributions depend on the choice of Kx.  However, due to the 
different signs of KB,+ and Kcp the net effect on K is lass significant than in the case 
of xspia. While, for example, the VWN potential yields KIlr = -0.0683%, for the total 
spin contribution, the largest value$ K, - 0.1588% and -0.1324% result from the 

net contribution to IC and also the 
significant anisotropy is due to K.,,+,pm in accordance with the appreciable magnitude 
of xs, especially its van Vleck part. From a Kramers-Kmnig analysis investigating 
the importance of the individual bands for Kab,pam we find that wansitions between 
the occupied states and bands 4 to 7 causing the DOS peak around cF provide the 
main contributions. This is in line with the situation concerning xoh. It is also 
interesting to note, that terms off diagonal with respect to the two atoms in the HCP 
unit cell (IC # n' on the RHS of equations (2.6)) can be important. Fbr Icnb,pm with 
H l e ,  e.g. we obtain k z p n  = 0.1837%, 

W GOtz and H Wmter 

potentials JMW and GL, respectively. A- e main - 

d d i a b  - - 0.1589%. 
Table 3. The Knighl shift Ot Sc and iU individual mntributions in % 

TZI compare with experiments, we give (K) = f(KIl + 2KL) = 0.266% and as 
a measure of the anisotropy, Km = f(Kll - K,) = -0.048%. The corresponding 
experimental numbers (Carter et d 1977) are (IC) = 0.29% and I C ,  = -0.032%. 
These data, including the sign of the anisotropy, are in satisfactory agreement with 
our result 

According to table 4, where we display our calculated data for Ru, the situation is 
qualitatively similar to S c  In the spin part the core polarization term tends to cancel 
the spin contact term, while Ks,dip again gives rise to a small anisotropy in IC. In 
spite of the large differences in the spin susceptibilities of Sc and Ru the numbers for 
ICs,c are comparable, because the amplitudes of the radial s wavefunctions are much 
larger for Ru (RgR"(O,eF)/Rp(O,eF) = 5.42). The s core shells 1 to 4 provide 
the following contributions to ICcp: -0.00676, -0.0364, -0.0069, and -0.0473% and 
the corresponding core hyperfine fields are -1 x lo', -5.4 x 104, -1.2 x lo4, and 
-7.02 x 16 kG, respectively. Kd2p?m dominates also in Ru and B significantly larger 
than in Sc. This might be surprsmg at first sight if one considers the results for 
xOh. However, one should keep in mind that, in contrast to xz, probes 
the immediate vicinity of the nucleus and contains integrals of the form 

1 
fd = /P2dP;;j@(P,%). (4.2) 

Since the d wavefunction of the l a t e 4  transition metal Ru is much more concentrated 
at smaller radii than that of the early-3d transition metal Sc, Ip can be expected 
to be signi6cantly larger than e. In fact we obtain I,"/I," = 7.02, a number 
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explaining the observed effect qualitatively. A Kramers-Kronig analysis demonstrates 
that similarly to Sc, bands in an extended energy region are important for both 
KOlb,pm and xri. This is shown by figure 5 where we draw the spectral functions of 
the correlation functions determining Kd,pa,a (26) and the van Vleck part, xz", 
of (25). The peaks between 0.1 and 0.5 Ryd are the result of transitions between the 
occupied bands and bands 8 to 12 

Table 4. The Knight shift of Ru and its individual mntributions in %. 

The following experimental results have been most recently obtained by 
Burgstaller er uf (1992): KII = 0.56 and KL = 0.46%. Whereas our value of 
0.526% for ( K )  is reasonably near the measured one (amounting to 0.493%), there 
is a significant difference in the sign and the magnitude of the anisotropy. 

Table 5. Nudear moments, hyperline fields and partial Dos for SE", RuW and Ru'Ol in 
the notation of Asada and l h k u r a .  ILK and QK haw been taken from Brevard and 
Granger (1981) tor Ru and from Goldman (1972) for Sc. 

~ ~~ 

ILK QK $lypefine fields (IOb Oe) 

Rd0' -0.7152 0.44 Ru 11597 2672 0.8646 -0.140 
RuW -0.6381 0.076 HF H L b  H:b HT 

Sc" 4.1562 -0.27. Sc 2.1974 0.6264 a1238 -sow 

Panial DOS at fF (statd(spin Eyd atom dimension of representation)) 



1716 W G(irt and H Wmter 

x x x x x x  

x x x x x x  
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Table 7. Interacting (&)and non-interacting (B;,) integrand for the Spin " a c t  term 
of ( I ITlT) .  The q-dependenl static spin susceptibilities and the Stoner enhancements 
are tabulated for mmparison. The B are measured in alomic units, the slsceptibililies 
are in units of emu m0l-l and q is in units of 2 a  fa; qv = 0. We employ the 
K,, mullin(! from the VWN polential. 

'I= 'Ir %c 

0 0.15 4307.8 
0 q!z 7193.0 
0.05 0 8821.6 
0.05 0.15 2738.2 
0.05 3148.9 
0.25 0 15029 
0.25 0.15 680.17 

0.5 0 467.47 
0.25 q p  1083.1 

q< B S C l B L  

195.03 22088 
208.35 34.52 

1915.1 4.606 
181.63 15.076 
45.74 68.844 

382.02 3.934 
172.06 3.953 
61.94 11.487 

214.63 2178 

x'(q,q;O) x%,q;O) 
465.5 68.92 
3395 70.90 
185.1 64.50 
442.8 72.67 
441.1 70.09 
1372 41.07 
184.1 %.I9 
723.9 60.91 
a.28 43.66 

S(q) 

6.76 
4.79 
287 
6.093 
634  
254 
3.16 
3.68 
1.89 

0.5 0.15 220.92 111.84 1.975 9233 44.45 208 
0.5 gBz 105.82 39.83 2657 41.15 24.20 1.70 ._ 
2 / 3 0  625.81 271.72 2253 60.26 35.13 1.72 

4.3. The spin-lnttice rehalion 

Whereas experimental measurements of l/Tl for Sc, obtained at mom temperature, 
date back to the 1960s (Masuda and Hashimoto 1969, Ross d a1 1969, Narath and 
Fromhold Jr 1%7), measuremen& for Ru have been undertaken only very recently 
(Burgstaller 1992). l/Tl for Sc has been calculated by Asada and Rrakura (1982) 
using their LMTO-ASA band-structure results. We performed calculations based on 
our KKR bandstructure for both substances and H parallel and perpendicular to the 
c axis. In the case of Ru we considered the two isotopes RuW and Ru'"~. A detailed 
a m u n t  of the results, neglecting many-body effects, is given by table 6, where we 
use exactly the same symbols that are explained in the paper of Asada and Rrakura. 
However, in contradistinction to them we apply the scalar relativistic expressions of 
Bliigel et al (1987). In table 5 we gather the nuclear and the electronic quantities 
determining 1/T, in this approximation, namely, the nuclear magnetic dipole- (pK) 
and quadrupole- ( QK) moments on the one hand and the symmetry-adapted partial 
DOS at eF, including the finite angular momentum off-diagonal matrix elements, % 
and S$, of the imaginary part of the one-particle Green's function and the hyperfine 
fields on the other. 'Ex" up to L,, = 2 have been taken into account The order- 
of-magnitude difference between the data for Ru and Sc is due to the fact that the 
influence of the larger hyperfine fields of Ru is overcompensated by the differences 
of pK and of the partial DOS components in favour of Sc. In both substances all the 
terms nondiagonal in the angular momentum components and/or the interactions 
(second half of table 6) turn out to be fairly unimportant. Rather striking, in the case 
of Sc, is the big share of the p orbital term which is due to a relatively high p DOS at 
eF. The differences in the values of the two Ru isotopes is an immediate consequence 
of the variance in their p,,., Since in metals the terms depending on Q,,. are generally 
much smaller than those containing p,,. the huge difference of the nuclear quadrupole 
moment between the two Ru isotopes influences TI only moderately. Nevertheless 
the d quadrupole contribution of Ru'OI is substantial For both substances l/Tl is 
slightly larger for H I c than for Hllc opposite to the Knight shifts. Though the 
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results are based on different bandstructure methods, our hyperfine fields and partial 
DOS for Sc are comparable to those of Asada and Terahra. The main difference lies 
in the off-diagonal quantity @,which is substantially smaller in our case. Our core 
polarization contributions are smaller, since we aeat the core electrons within the 
SDFA instead of the unrestricted Hartree-Fock approximation. The net numbers for 
l/T,, however, are in close agreement. For SC the experimental room-temperature 
data for (l/T,T) obtained by Masuda and Hashimoto (1%9), Ross er a1 (1969), and 
Narath and Fmmhold Jr (1967) are 0.68f 0.09, 0.92f 0.08, and 0.63&0.04 s-'K-I, 
respectively. ?b investigate the cause of this difference between the experimental and 
the theoretical values we considered many-body enhancement effects in the spin terms 
of 1/T, for Sc within the SDFA-RPA. lb start with the spin contact term, equations 
(2.8) and (2.11) yield 

W G6Iz and H U W e r  

Here, the indices vi (running from 1 U) 3 in the present application) take care 
of the energy dependence of the radial wavefunctions R which is important when 
calculating the enhanced quantities at fine q. Replacing Bs,c with the corresponding 
non-interacting quantity, B:,, we end up with the usual formula for (h),,,, in terms 
of the s DOS at eF and the number given in table 6. Equation (4.3) again refers 
to the non-relativistic case and may eas$ be cast into the scalar relativistic form 
by replacing the radial functions by the integrals as derived by Bliigel d a1 (1987). 
We have evaluated the wavevector- and frequencydependent spin susceptibility of 
scandium for a number of q-points in the IWBZ and collect the results, relevant for 
the present problem, in table 7. We compare the quantities B,,,, B&, and their ratios 
on the one hand to the static interacting and non-interacting susceptibilities and the 
Stoner enhancement factors on the other hand. There is no general q-independent 
relation between some power of S(q) and the interaction effects on the spin contact 
term. In some parts of the phase space, especially for q in the (1,0,0) direction, they 
scale with a p e r  greater than the square of S(q), whereas in other parts they behave 
rather moderately. In the regions with the largest enhancement effects, the phase- 
space weighted B& is relatively small, while for larger values of q,, q, the influence 
of the enhancement is reduced to factors near 2 with increasing tendency towards the 
BZ boundary. In view of the obsewed, rather strong qdependence of the relevant 
quantities an exact evaluation of T,, ,  would require one to determine ?$p,p ' ,w)  
on a rather dense mesh within the BZ, an extremely tedious task However, the data 
collected in table 7 allow one to determine T.,, to a reasonable approximation. For 
this purpose we write the BZ integral of equatlon (4.3) in the following form 
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Here, n- = 24, is the number of the IWBZ and the integrals go over one prismatic 
IWBZ The data collected in table 7 allow for interpolating E$' within the qz-qz 
plane and subsequently evaluating flp)(0). Assuming angular isotropy of flp)(4) we 
conclude that enhancement effects increase T;,: by a factor of about 3.3, leading 
to (T,T);: N 0.236 s-'K-' instead of the number 0.0788 quoted in table 7. We 
found thai interaction effects on the spin dipolar terms are less dramatic and give 
rise to an increase in these contributions by a factor of about 1.5. Altogether we 
end up with (T,T)-' e 0.63 S-IK-', a number in the range of the experimental 
data. It is gratifying to remark that the evaluation of the spin contact term using 
the non-interacting susceptibilily at the same q points as the enhanced susceptibility 
and applying the isotropy assumption leads to almost the Same value for (TIT);: as 
obtained with the formula containing the s DOS at E ~ ,  the deviation amounting to less 
than 10%. 

For Ru we did not include interaction effects. Since the long-wavelength Stoner 
enhancement factor of this substance is low, we expect them to be rather insignificant. 
The measurements of Burgstaller (1992) for Ru, performed at He temperatures, yield 
(TIT)-' = 0.063 and 0.077 s-'K-l in the case of RuW and RuIuL, respectively. The 
agreement with our theoretical data is good. We have just learned of the most recent 
calculations of (TIT)-' for Ru by Markendorfer (1992), whose numhers, emerging 
from a fully relativistic treatment are very close to ours. 

5. Summary 

We gave a quantitative account of the low-temperature susceptibilities and the nuclear 
resonance behaviour of the HCP d transiton metals Sc and Ru on the basis of magnetic 
correlation functions. In this unified approach it became apparent that these quantities 
depend sensitively and differently on the details of the electronic structure of the 
substance in question. Not only the Fermi surface properties but the bandstructure 
in a finite energy range, which were explored by the present method, are important. 
The behaviour of the correlation functions in different regions of the real and the 
reciprocal space is probed and a quantitative treatment of all those quantities was only 
possible because-within the SDFA-wA-we were able m evaluate these functions in full 
dependence on their arguments. whereas static and long-wavelength correlations go 
into the homogeneous susceptibilities and the Knight shifts, for spin-lattice relaxation 
the whole BZ has to be considered, once interaction effects are taken into account. 
In the case of Sc we have shown that this becomes a true low-frequency dynamical 
problem since these effects cannot beadequatelyexpressed by static quantities like the q- 
dependent Stoner factors squared as suggested by theories based on the homogeneous 
elecrron gas model. We have also demonstrated that the rapidly varying behaviour at 
finitewavevectors cannot be derived born the features at small p and that the correlation 
functions are not interconnected by simple relations. In view of the approximations, 
unavoidable in a many-body problem of this kind, the resuln of our SDFA-RPA approach 
are reasonably near to the experimental data and describe the trends correctly. 
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